First-Principles-Based Kinetic Monte Carlo Simulation of Nitric Oxide Reduction over Platinum Nanoparticles under Lean-Burn Conditions

نویسندگان

  • Donghai Mei
  • Jincheng Du
  • Matthew Neurock
چکیده

The kinetics for NO reduction over supported platinum under lean condition were investigated by firstprinciples-based kinetic Monte Carlo simulation over three-dimensional Pt nanoparticles. Model platinum nanoparticles with diameters ranging from 2.3 to 4.6 nm were constructed using a truncated octahedral cluster consisting of a two (100) facets and eight (111) facets. First-principles density functional theory (DFT) calculations were used to calculate the intrinsic kinetic parameters including the binding energies for all of the surface intermediates as well as the activation barriers and reaction energies that comprise the reaction mechanism over the (100) and (111) facets, as well as the (111)/(100) edge sites on the three-dimensional nanoparticle. Both intraand inter-facet diffusion of adsorbates were included to model surface diffusion effects over the particle surface. The simulation results show that under lean conditions where there is excess oxygen, NO reduction to N2 occurs solely on the (100) facets. The oxidation of NO to NO2, while much more favored on the (111) facets, can occur on both (100) and (111) facets. Only small amounts of N2O form over the (100) facets. The simulated apparent activation energies for N2 and NO2 formation over the entire particle are 45 and 42 kJ/mol, respectively. The latter is in agreement with experimentally measured value of 39 kJ/mol [Mulla, S. S., et al., Catal. Lett. 2005, 100, 267]. The effects of particle size on the activities of NO reduction to N2 and NO oxidation to NO2 depend upon the ratios of exposed surface sites. For the threedimensional model Pt nanoparticles examined here, the fractions of the (100) terrace sites are similar while the fraction of the (111) terrace sites increases with increasing particle size. As a result, the activity for NO reduction is somewhat insensitive to the particle size which symmetrically increases the numbers of (111) and (100) facets as the size increases. NO reduction, however, increases much more dramatically when the number of the (100) sites increases over the (111) sites. NO oxidation activity, on the other hand, appears to increase with increasing particle size regardless of the symmetry or shape of the particle as the reaction occurs predominantly over the (111) sites but can also take place on the (100) terrace sites. The structure insensitivity for NO oxidation is consistent with experimental results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation and Comparison of Metal Nanoparticles on Dose Enhancement Effect in Radiotherapy Using Monte Carlo Simulation Method

Introduction: The main goal of radiation therapy is destroying the tumor so that the surrounded healthy tissues have received the least amount of radiation at the same time. In recent years, the use of nanoparticles has received much attention due to the increasing effects they can have on the deposited dose into the cancer cells. The aim of this study was to investigate the effects of nanopart...

متن کامل

CO oxidation on Pd(100) at technologically relevant pressure conditions: First-principles kinetic Monte Carlo study

The possible significance of oxide formation for the catalytic activity of transition metals in heterogeneous oxidation catalysis has evoked a lively discussion over the recent years. On the more noble transition metals such as Pd, Pt, or Ag , the low stability of the common bulk oxides primarily suggests subnanometer thin oxide films, so-called surface oxides, as potential candidates that may ...

متن کامل

Kinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts

Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...

متن کامل

Multiscale simulation on electromigration of the oxygen vacancies in metal oxides

The energetics and dynamics of electromigration of the oxygen vacancy is investigated with first-principles calculations and kinetic Monte Carlo methods. To simulate the charged oxygen vacancy under external fields within the first-principles approach, we introduce a slab model with electron-accepting dopants in the surface. The analysis of the density of states confirms that the oxygen vacanci...

متن کامل

Kinetics and mechanism of the reduction of nitric oxides by H2 under lean-burn conditions on a Pt±Mo±Co/a-Al2O3 catalyst

The kinetics and the mechanism of the selective reduction of nitric oxides (NOx) by hydrogen is studied on a trimetallic Pt± Mo±Co/a-Al2O3 catalyst under oxidising conditions. This system is interesting in view of an exhaust gas control of power plants or lean-burn cars. It can be shown that the NO dissociation is the crucial step, dominating the overall reaction behaviour and that it depends o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010